Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 656-662, 2021.
Article in Chinese | WPRIM | ID: wpr-881372

ABSTRACT

Objective@# To investigate the effects of graphene on the proliferation, migration and cell morphology of dental pulp stem cells (DPSCs).@*Methods@#Graphene powder was prepared by the oxidation-reduction method, and a 0.5 mg/mL graphene dispersion was prepared. Raman spectroscopy and atomic force microscopy were used to characterize the structure and surface morphology of graphene. DPSCs were isolated and cultured in vitro. MTT assay was used to detect the effects of different concentrations of graphene dispersions (0, 1, 5, 10, 20, 50, 100 μg/mL) on the proliferation and wound healing assay was used to detected the migration abilities of DPSCs. The effects of graphene on the morphology of DPSCs were observed by immunofluorescence staining. @*Results @# In the present study, compared with the control group (0 μg/mL), the proliferation of DPSCs in the 100 μg/mL group was inhibited at 72 h (P < 0.05), and the proliferation of DPSCs in the other groups was not significantly affected (P > 0.05). Graphene dispersions at 10 and 20 μg/mL promoted the migration of DPSCs (P < 0.05). After being cultured in 20 μg/mL graphene dispersions for 3 days, the DPSCs showed a large and orderly cytoskeletal structure, and the spread area of cells was not significantly different from that of the control group (0 μg/mL) (P > 0.05), while some cells had the morphological characteristics of nerve cells.@* Conclusion @# Graphene has good biocompatibility and is expected to be a suitable material for tissue engineering within fitting concentration.

2.
Frontiers of Medicine ; (4): 43-52, 2021.
Article in English | WPRIM | ID: wpr-880950

ABSTRACT

Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.


Subject(s)
Microscopy, Atomic Force , Neutrophils
3.
Braz. J. Pharm. Sci. (Online) ; 56: e17797, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132045

ABSTRACT

Oral fast-dispersible film was prepared by utlizing donepezil hydrochloride (drug) and various cellulose derivatives such as hydroxypropyl methyl cellulose (hypermellose) (HPMC), microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) to treat Alzheimer's disease. NCC was synthesized by ultra-sonication method using MCC and this was converted to thinfilm formulation (NCC-F) using solvent casting technique. The interaction between the polymer and the drug was investigated by spectral analysis such as UV, FTIR, and 1H- NMR. FTIR confirmed that the compatibility of drug and polymer in ODF formulation. NCC-F has shown an average surface roughness of 77.04 nm from AFM and the average particle size of 300 nm from SEM analysis. Nano sized particle of NCC-F leads faster in vitro dissolution rate (94.53%) when compared with MCC-F and F3 formulation. Animal model (in vivo) studies of NCC-F formulation has reached peak plasma concentration (Cmax) up to 19.018 ng/mL in the span of (tmax) 4 h with greater relative bioavailability of 143.1%. These results suggested that high surface roughness with nanosized NCC-F formulation attained extended drug availability up to (t1/2) 70 h.


Subject(s)
Animals , Male , Female , Rats , In Vitro Techniques/methods , Dissolution/classification , Donepezil/agonists , Sonication/methods , Pharmaceutical Preparations/analysis , Cellulose , Spectroscopy, Fourier Transform Infrared/methods , Models, Animal , Alzheimer Disease/pathology
4.
J. appl. oral sci ; 28: e20200493, 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1134787

ABSTRACT

Abstract Objective This study aimed to evaluate the effects of different toothpastes on the surface wear of enamel, dentin, composite resin (CR), and resin-modified glass ionomer cement (RMGIC), and to perform a topographic analysis of the surfaces, based on representative images generated by atomic force microscopy (AFM) after erosion-abrasion cycles. Methodology One hundred and forty bovine incisors were collected and divided into two groups: 72 enamel and 72 dentin blocks (4×4 mm). Half of the specimens were restored with CR (Filtek Z350 XT) and the other half with RMGIC (Fuji II LC). Then, samples were submitted to a demineralization cycle (5 days, 4×2 min/day, 1% citric acid, pH 3.2) and exposed to three different toothpastes (2×15 s/day): without fluoride (WF, n=12), sodium fluoride-based (NaF, n=12), and stannous fluoride-based (SnF2, n=12). Surface wear, as well as restoration interfaces wear, were investigated by profilometry of the dental substrates and restorative materials. All representative surfaces underwent AFM analysis. Data were analyzed by two-way analysis of variance and Tukey's tests (α=0.05). Results NaF-based toothpaste caused the greater dentin surface wear (p<0.05). Toothpastes affected only enamel-restoration interfaces. AFM analysis showed precipitate formation in dentinal tubules caused by the use of fluoride toothpastes. Conclusions NaF-based toothpastes had no protective effect on enamel adjacent to CR and RMGIC against erosion-abrasion challenges, nor on dentin adjacent to RMGIC material. SnF2-based toothpastes caused more damage to interfaces between enamel and RMGIC.


Subject(s)
Animals , Cattle , Tooth Erosion/chemically induced , Tooth Erosion/prevention & control , Toothpastes , Composite Resins , Glass Ionomer Cements , Dental Enamel , Dentin
5.
Journal of Medical Biomechanics ; (6): E449-E454, 2020.
Article in Chinese | WPRIM | ID: wpr-862368

ABSTRACT

Objective To investigate the high-fat diet effect on morphology and stiffness of endothelial cells. Methods SD rats were randomly divided into high-fat diet group (AS group, n=3) and control group (CON group, n=3). Rat aortic endothelial cells were obtained from rat thoracic aorta by explant method. Cell morphology was observed under inverted microscopy. The mean fluorescent intensity of F-actin in two groups was calculated by immunofluorescence staining. Cell stiffness was measured by atomic force microscopy (AFM). Results The endothelial cells migrated from tissue plant on the 7th day and formed confluence after cultivation for 14 days. Endothelial cells were identified by factor Ⅷ immunofluorescence staining. Cells in AS group showed enhanced perimeter (P<0.01), aspect ratio (P<0.01), and area (P>0.05), while less circularity (P<0.01) compared with the cells in control group. The mean fluorescence intensity of F-actin in AS group was significantly higher than that in control group (P<0.01). AFM showed that the cell stiffness of AS group was significantly higher than that of control group (P<0.01). Conclusions High-fat diet would change the morphology and stiffness of endothelial cells, which might subsequently affect their normal function and become an important incentive to AS.

6.
Chinese Journal of Tissue Engineering Research ; (53): 87-92, 2020.
Article in Chinese | WPRIM | ID: wpr-848059

ABSTRACT

BACKGROUND: To date, ANLN has definite roles in altering cell shape, regulating cell-cell junction integrity in interphase and stabilizing actomyosin contractile rings in cytokinesis, but its effects on cell mechanical properties and on cytoskeletal proteins have rarely been reported. OBJECTIVE: To investigate the effect of ANLN deletion on the mechanical properties and cytoskeleton of interphase Hela cells. METHODS: Surface elastic modulus and membrane rupture force of normal untreated Hela cells and ANLN RNA stably knocked down Hela cells were measured by atomic force microscopy. We screened for the cells that stably expressed mCherry-Myosin II A, and observed the distribution characteristics of cytoskeletal proteins by laser scanning confocal microscopy. RESULTS AND CONCLUSION: (1) The elastic modulus of Hela cells with ANLN stably knocked down was significantly higher than that of normal Hela cells, and the elastic modulus of normal cells were more prone to polar distribution (gradually decreasing between the two poles) than that of ANLN knockdown Hela cells. However, there was no significant difference in the membrane rupture force at the long-axis edge region between the two groups. (2) Myosin IIA lowly expressed in the marginal region of ANLN knockdown cells. (3) The actin fibers tended to be scattered in the near-bottom cell-cell junction region of the ANLN knockdown group, and there were no obvious intracellular fibers bundles arranging along the long axis. The cell gap tended to enlarge in the middle layer. To conclude, ANLN knockdown cells have the greatest impact in the marginal region, the deficiency of ANLN leads to a more frequent remodeling in the cell marginal region, and the cells need to accumulate more cytoskeletal proteins and binding proteins to stabilize the cell state, resulting in higher modulus of elastics.

7.
Rev. invest. clín ; 71(6): 402-407, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1289712

ABSTRACT

ABSTRACT Background Amebiasis is an infectious disease caused by Entamoeba histolytica. It represents one of the three worldwide leading causes of death by parasites and a public health problem due to its frequency, morbidity, mortality, and easy dispersion. Objective The study was aimed to evaluate the in vitro effect of Lactobacillus spp. postbiotics on E. histolytica trophozoites (HM1-IMSS strain) and to determine morphometric changes in trophozoite membrane by atomic force microscopy (AFM). Methods Bioassays on trophozoites were conducted with lyophilized postbiotics at 0.1, 0.3, and 0.5 mg/mL concentrations, and trophozoite samples were obtained for AFM analysis Results Results indicated postbiotic inhibitory activity; the highest percentage inhibition was 89.63% at 0.5 mg/mL. Trophozoites nanomechanical analysis showed 28.32% increase in ruggedness and 56% decrease in size with treatments compared to the control. Conclusion Our study showed that the synergy of Lactobacillus postbiotics inhibited E. histolytica HM1-IMSS in vitro growth under axenic conditions, inducing morphometric alterations in trophozoites’ cell membrane. These results would allow designing strategies or treatments aimed at E. histolytica control in the future.


Subject(s)
Humans , Entamoeba histolytica/physiology , Trophozoites/physiology , Lactobacillus/physiology , In Vitro Techniques , Probiotics/pharmacology
8.
J. venom. anim. toxins incl. trop. dis ; 25: e20190001, 2019. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1012636

ABSTRACT

This work aimed to explore the action of natural prodigiosin on both bacterial organisms and Trypanosoma cruzi cells. Methods: Natural prodigiosin pigment was extracted and purified from cultures of Serratia marcescens. Two media, peanut broth and peptone glycerol broth, both recommended in the literature for prodigiosin production, were compared. The prodigiosin obtained was employed to explore its antimicrobial properties against both bacteria and Trypanosoma cruzi cells. Results: Peanut broth yielded four times more prodigiosin. The prodigiosin showed remarkable activity (minimal inhibitory concentrations in the range of 2-8 µM for bacteria and half maximal inhibitory concentration of 0.6 µM for Trypanosoma cruzi). In fact, the prodigiosin concentration required to inhibit parasite growth was as low as 0.25 mg/l versus 4.9 mg/l of benznidazole required. Furthermore, atomic force microscopy revealed marked morphological alterations in treated epimastigote forms, although no pore-formation activity was detected in protein-free environments. Conclusions: This work demonstrates the potential usefulness of prodigiosin against some gram-positive and gram-negative bacteria and Trypanosoma cruzi although further studies must be done in order to assess its value as a candidate molecule.(AU)


Subject(s)
Animals , Prodigiosin/therapeutic use , Trypanosoma cruzi , Chagas Disease , Gram-Negative Bacteria
9.
Braz. J. Pharm. Sci. (Online) ; 55: e00254, 2019. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1055301

ABSTRACT

One of the important fields in nanotechnology is the development of an environment friendly method for the synthesis of nanoparticles. Many approaches show that microorganisms are the most reliable tools for biosynthesis of nanoparticles compared to physical and chemical methods. In our study, fungi have been exploited for extracellular production of metal nanoparticles. It was observed that in Scedosporium, silver ions are reduced to silver nanoparticles, which was confirmed by UV-visible spectrophotometry and AFM. Optimization studies showed that as the concentration of AgNO3 used for synthesis increased, particles' size also increased. Size of the particles at different concentrations of AgNO3 was observed to be 79-107 nm with particles being ellipsoidal to spherical in shape. Silver nanoparticles synthesized from 2.0 mM silver nitrate, showed maximum antimicrobial activity compared to all antibiotics tested including synergistic effects. In vitro cytotoxicity of silver nanoparticles against MCF 7 and PC 3 showed that as the concentration of silver nanoparticles increased, a decrease in the percentage cell viability was observed with IC50 values being 60.09 and 57.43 µg/ml respectively. Therefore, through this study, it could be said that extracellular synthesis of silver nanoparticles from Scedosporium was simple, ecofriendly, proving excellent antimicrobial and anticancer agents.

10.
Braz. dent. j ; 29(5): 492-499, Sept.-Oct. 2018. tab, graf
Article in English | LILACS | ID: biblio-974174

ABSTRACT

Abstract This study evaluated the effect of different hydrofluoric acid (HF) concentrations on the bond strength between a lithium disilicate-based glass ceramic and a resin cement. Eighty ceramic-blocks (12×7×2 mm) of IPS e.Max CAD (Ivoclar Vivadent) were produced and randomly assigned to 8 groups, considering 2 study factors: HF concentration in 4 levels, i.e., 1% (HF1), 3% (HF3), 5% (HF5), and 10% (HF10), and storage in 2 levels, i.e., baseline (tests were performed 24 h after cementation), and aged (storage for 150 days + 12,000 thermal-cycles at 5°C and 55°C). Acid etching (20 s) was performed, followed by washing, drying, and silanization. Four resin cement cylinders (ϕ= 0.96 mm) were built-up from starch matrices on each ceramic sample (n= 40). Additional ceramic samples were etched and analyzed for contact angle, micro-morphology, and roughness. In baseline condition (without aging), the HF3, HF5, and HF10 groups showed similar bond strength values (13.9 - 15.9 MPa), and HF1 (11.2 MPa) presented lower values than HF5, being that statistically different (p= 0.012). After aging, all the mean bond strengths statistically decreased, being that HF3, HF5, and HF10 (7.8 - 11 MPa) were similar and higher than HF1 (1.8 MPa) (p= 0.0001). For contact angle, HF3, HF5, and HF10 presented similar values (7.8 - 10.4°), lower than HF1 and CTRL groups. HF5 and HF10 presented rougher surfaces than other conditions. For better bond strength results, the tested ceramic may be etched by HF acid in concentrations of 3%, 5%, and 10%.


Resumo Este estudo avaliou o efeito de diferentes concentrações de ácido fluorídrico (HF) na resistência de união entre uma cerâmica vítrea à base de dissilicato de lítio e um cimento resinoso. Oitenta blocos cerâmicos (12×7×2 mm) de IPS e.Max CAD (Ivoclar Vivadent) foram produzidos e distribuídos aleatoriamente em 8 grupos, considerando 2 fatores de estudo: concentração de HF em 4 níveis, isto é, 1% (HF1), 3% (HF3), 5% (HF5), e 10% (HF10), e armazenamento em 2 níveis, isto é, condição inicial (testes foram realizados 24 h após a cimentação), e envelhecidos (150 dias de armazenamento + 12.000 ciclos térmicos a 5°C e 55°C). Condicionamento ácido (20 s) foi realizado, seguido por lavagem, secagem e silanização. Quatro cilindros de cimento resinoso (ϕ= 0.96 mm) foram construídos a partir de matrizes de amido em cada amostra cerâmica (n= 40). Amostras cerâmicas adicionais foram condicionadas e analisadas quanto ao ângulo de contato, micro-morfologia e rugosidade. Na condição inicial (sem envelhecimento), os grupos HF3, HF5, e HF10 mostraram valores de resistência de união similares (13.9 - 15.9 MPa), e HF1 apresentou valores menores que HF5, sendo estatisticamente diferente (p= 0.012). Após o envelhecimento, todas as médias de resistência de união diminuíram estatisticamente, sendo que HF3, HF5 e HF10 foram similares e maiores que HF1 (p= 0.0001). Para o ângulo de contato, HF3, HF5 e HF10 apresentaram valores similares (7.8 - 10.4°), menores que os grupos HF1 e CTRL. HF5 e HF10 apresentaram superfícies mais rugosas que as outras condições. Para melhores resultados de resistência de união, a cerâmica testada pode ser condicionada com ácido fluorídrico nas concentrações de 3%, 5% e 10%.


Subject(s)
Acid Etching, Dental/methods , Ceramics/chemistry , Dental Bonding/methods , Resin Cements/chemistry , Dental Porcelain/chemistry , Hydrofluoric Acid/chemistry , Stress, Mechanical , Surface Properties , Materials Testing , Microscopy, Atomic Force , Shear Strength
11.
Journal of Cancer Prevention ; : 87-92, 2018.
Article in English | WPRIM | ID: wpr-740099

ABSTRACT

BACKGROUND: The mechanical deformability of cancer cells has attracted particular attention as an emerging biomarker for the prediction of anti-cancer drug sensitivity. Nevertheless, it has not been possible to establish a general rubric for the identification of drug susceptibility in breast cancer cells from a mechanical perspective. In the present study, we investigated the mechanical alteration associated with resistance to adjuvant therapy in breast cancer cells. METHODS: We performed an ‘atomic force microscopy (AFM)-based nanomechanical study’ on ‘drug-sensitive (MCF-7)’ and ‘drug-resistant (MCF-7/ADR)’ breast cancer cells. We also conducted cell viability tests to evaluate the difference in doxorubicin responsiveness between two breast cancer cell lines. We carried out a wound closure experiment to investigate the motility changes associated with chemotherapeutic resistance. To elucidate the changes in molecular alteration that accompany chemotherapeutic resistance, we investigated the expression of vinculin and integrin-linked kinase-1–which are proteins involved in substrate adhesion and the actin cytoskeleton–using Western blotting analysis. RESULTS: A MTT assay confirmed that the dose-dependent efficacy of doxorubicin was reduced in MCF-7/ADR cells compared to that in MCF-7 cells. The wound assay revealed enhanced two-dimensional motility in the MCF-7/ADR cells. The AFM mechanical assay showed evidence that the drug-resistant breast cancer cells exhibited a significant decrease in mechanical deformability compared to their drug-sensitive counterparts. The mechanical alteration in the MCF-7/ADR cells was accompanied by upregulated vinculin expression. CONCLUSIONS: The obtained results manifestly showed that the altered mechanical signatures–including mechanical deformability and motility–were closely related with drug resistance in the breast cancer cells. We believe that this investigation has improved our understanding of the chemotherapeutic susceptibility of breast cancer cells.


Subject(s)
Actins , Biophysics , Blotting, Western , Breast Neoplasms , Breast , Cell Line , Cell Survival , Doxorubicin , Drug Resistance , Drug Resistance, Multiple , Elastic Modulus , MCF-7 Cells , Microscopy, Atomic Force , Vinculin , Wounds and Injuries
12.
Natal; s.n; 2018. 69 p. tab, ilus.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1510559

ABSTRACT

O objetivo deste trabalho foi avaliar a rugosidade superficial, a molhabilidade, a disposição em profundidade das partículas de carga, o mapeamento de elementos químicos, a microtopografia em 3D e a micromorfologia de compósitos convencionais e bulk fill após polimento adicional. Éspécimes foram preparados de cada compósito testado, sendo quatro do tipo bulk fill (Filtek Bulk, Fill Tetric N-Ceram Bulk Fill, Opus Bulk Fill e X-tra Fil) e quatro convencionais (Filtek Z250 XT, Grandioso, Tetric NCeram, Vittra APS), de acordo com três técnicas de acabamento/polimento/polimento adicional (n = 10): sem acabamento e polimento, acabamento e polimento com borrachas abrasivas (Astropol), acabamento e polimento com Astropol mais polimento adicional com escova de carbeto de silício. A rugosidade superficial (Ra) e o ângulo de contato foram medidos usando-se um perfilômetro e goniômetro adaptado, respectivamente. A microtopografia 3D foi avaliada utilizando microscopia de força atômica (MFA), enquanto a micromorfologia e a disposição em profundidade das partículas de carga, através da microscopia eletrônica de varredura (MEV). O mapeamento de elementos químicos foi avaliado por meio de Espectroscopia por energia dispersiva de raio-X (EDS). A rugosidade e o ângulo de contato foram analisados pelo ANOVA-dois fatores e teste de Tukey (p <0,05); os demais dados foram analisados descritivamente. A disposição das partículas de carga em profundidade de todas as resinas envolvidas neste estudo apresentou uma camada superficial rica em matriz orgânica e uma camada subsuperficial rica em partículas de dimensões mais diminutas. O polimento adicional: diminuiu a rugosidade superficial das resinas Filtek Bulk Fill, Vittra APS, Tetric N-ceram Bulk Fill e X-tra fil; aumentou o valor do ângulo de contato da X-tra Fil e diminuiu da Filtek Z250 XT. Nas análises para microtopografia em 3D e a micromorfologia, superfícies mais lisas e uniformes foram observadas em todas as resinas. Os elementos: carbono (C), cxigênio (O), silício (Si), zircônia (Zr) e alumínio (Al) foram presentes em todas as resinas compostas. O bário (Ba) foi ausente na Filtek Z250 XT, Filtek Bulk Fil e Vittra APS. O carbono foi predominante em todas as resinas. Após polimento adicional, houve um aumento na detecção de oxigênio para todas as resinas, exceto para Tetric N-Ceram e Xtra Fil e uma diminuição de carbono, exceto para a Tetric N-Ceram Bulk Fil. O silício diminuiu apenas nas resinas Z250 XT, Tetric N-Ceram e Tetric N-Ceram Bulk Fill. A zircônia diminuiu para a Tetric N-Ceram Bulk Fill e o alumínio para Z250 XT e Tetric N-Ceram Bulk Fill. O bário aumentou para Opus Bulk fill e X-tra Fil. O titânio foi ausente para todas as resinas. Portanto, o polimento adicional melhorou as propriedades de superfície das resinas estudadas (AU).


The objective of this study was to evaluate the surface roughness, wettability, the depth distribution of the charge particles, the mapping of chemical elements, the 3D microtopography and the micromorphology of the composites of the conventional and bulk fill after additional polishing. The specimens were prepared from each of the composites tested, four of them being bulk fillers (Filtek Bulk Fill Tetric N-Ceram Bulk Fill Opus Bulk Fill X-tra Fil) and four conventional ones (Filtek Z250 XT, Grandioso, Tetric N-Ceram, Vittra APS ), according to three additional finishing / polishing / polishing techniques (n = 10): without finishing and polishing, finishing and polishing with abrasive rubbers (Astropol), finishing and polishing with Astropol plus additional polishing with silicon carbide brush. The surface roughness (Ra) and contact angles were measured using a profilometer and adapted goniometer, respectively. The 3D microtopography was evaluated using atomic force microscopy (AFM); while the micromorphology and the in-depth arrangement of the charge particles by scanning electron microscopy (SEM). The mapping of chemical elements was evaluated by means of X-ray Dispersive Energy Spectroscopy (EDS). The roughness and the contact angle were analyzed by ANOVA- two factors and Tukey test (p <0.05); the other data were analyzed descriptively. The arrangement of the in-depth charge particles of all the resins involved in this study had an organic matrix rich surface layer and a particulate rich subsurface layer of smaller dimensions. Addicional polishing: reduced surface roughness of Filtek Bulk Fill resins, Vittra APS, Tetric N-ceram Bulk Fill and X-trafil resins; increased the contact angle value of the X-tra Fil and decreased the Filtek Z250 XT. In the analyzes for 3D microtopography and micromorphology, smoother and more uniform surfaces were observed in all a resins. The elements: carbon (C), oxygen (O), silicon (Si), zirconia (Zr) and aluminum (Al) were present in all composite resins. Barium (Ba) was absent on Filtek Z250 XT, Filtek Bulk Fil and Vittra APS. Carbon was predominant in all resins. After additional polishing, there was an increase in oxygen detection for all resins except for Tetric N-Ceram and X-tra Fil and a decrease in carbon except for Tetric N-Ceram Bulk Fil. Silicon decreased only in the Z250 XT, Tetric N-Ceram and Tetric NCeram Bulk Fill resins. Zirconia decreased for Tetric N-Ceram Bulk Fill and aluminum for Z250 XT and Tetric N-Ceram Bulk Fill. Barium increased for Opus Bulk fill and X-tra Fil. Titanium was absent for all resins. Therefore, additional polishing improved the surface properties of the resins studied (AU).


Subject(s)
Microscopy, Electron, Scanning/instrumentation , Wettability , Microscopy, Atomic Force/instrumentation , Composite Resins/chemistry , Dental Polishing , In Vitro Techniques/methods , Analysis of Variance , Dental Materials , Esthetics, Dental , Physical Phenomena , Mouth Rehabilitation
13.
Malaysian Journal of Microbiology ; : 462-467, 2018.
Article in English | WPRIM | ID: wpr-751181

ABSTRACT

Aims@#Antimicrobial resistance (AMR) is a growing threat to public health, where treatments using conventional drugs are becoming ineffective. One viable but underexplored alternative is through the use of Dioscorea hispida, a wild plant that exhibits antimicrobial properties. This study aims to explore D. hispida effectiveness as an antibacterial and antibiofilm agent against selected pathogenic and non-pathogenic bacteria. @*Methodology and results@#Different concentrations of D. hispida crude extracts (0 – 2.5 mg/mL) were tested against the growth of planktonic bacterial cells over 24 h incubation, and the half maximal effective concentration (EC50) obtained was used in the antibiofilm test over 24 and 48 h. All bacteria treated with D. hispida showed significant (P<0.05) reduction in planktonic cell and biofilm densities against the negative control starting at 0.3 mg/mL. However, in comparison to the antibiotic, only certain bacteria were significantly affected by D. hispida, implying the plant has a ‘moderate’ biocidal activity in general. Furthermore, Atomic Force Microscopy imaging of S. aureus biofilm with D. hispida revealed increased height and width of cell clusters despite reduction in volume compared to the negative control, suggesting unique biofilm resistance behaviour against the plant. @*Conclusion, significance and impact of study@#This study demonstrated D. hispida capability as a natural antimicrobial and antibiofilm agent. The plant could complement current antimicrobials to maximise killing efficiency and minimise occurrences of resistance. Unique biofilm behaviour against D. hispida also warrants further investigation on the effect of biocides towards biofilm structure. Overall, this research provides new insights into a traditional plant-based antimicrobial activity in combating infectious diseases and AMR.

14.
Restorative Dentistry & Endodontics ; : e10-2018.
Article in English | WPRIM | ID: wpr-741969

ABSTRACT

OBJECTIVES: To examine the surface topography of intact WaveOne (WO; Dentsply Sirona Endodontics) and WaveOne Gold (WOG; Dentsply Sirona Endodontics) nickel-titanium rotary files and to evaluate the presence of alterations to the surface topography after root canal preparations of severely curved root canals in molar teeth. MATERIALS AND METHODS: Forty-eight severely curved canals of extracted molar teeth were divided into 2 groups (n = 24/each group). In group 1, the canals were prepared using WO and in group 2, the canals were prepared using WOG files. After the preparation of 3 root canals, instruments were subjected to atomic force microscopy analysis. Average roughness and root mean square values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way analysis of variance and post hoc Tamhane's tests at 5% significant level. RESULTS: The surface roughness values of WO and WOG files significantly changed after use in root canals (p < 0.05). The used WOG files exhibited higher surface roughness change when compared with the used WO files (p < 0.05). CONCLUSIONS: Using WO and WOG Primary files in 3 root canals affected the surface topography of the files. After being used in root canals, the WOG files showed a higher level of surface porosity value than the WO files.


Subject(s)
Dental Pulp Cavity , Microscopy, Atomic Force , Molar , Porosity , Root Canal Preparation , Tooth
15.
Journal of Southern Medical University ; (12): 931-937, 2018.
Article in Chinese | WPRIM | ID: wpr-691227

ABSTRACT

Without losing its high resolution, high-speed atomic force microscope (HS-AFM) represents a perfect combinationof scanning speed and precision and allows real-time and observation of the dynamic processes in a biological system atboth the cellular and molecular levels. By combining the extremely high temporal resolution with the spatial resolution andcoupling with other advanced technologies, HS-AFM shows promising prospects for applications in life sciences such as cellbiology. In this review, we summarize the latest progress of HS-AFM in the field of cell biology, and discuss the impact ofenvironmental factors on conformation dynamics of DNA, the binding processes between DNA and protein, the domainchanges of membrane proteins, motility of myosin, and surface structure changes of living cells.

16.
Journal of Southern Medical University ; (12): 1107-1114, 2018.
Article in Chinese | WPRIM | ID: wpr-691203

ABSTRACT

Telomere plays a crucial role in the physiological and pathological processes of cells. At the end of the telomere, the single-stranded DNA repeat sequence rich in guanine (G) folds in the presence of monovalent metal ions such as Na or K to form a G-quadruplex structure. This structure can not be extended by telomerase and inhibits the activity of telomerase, thus becoming a potential anticancer target. Stabilizing the formation of DNA G-quadruplex structures by small molecule ligands has become a new strategy for designing many anticancer drugs, and studying the interaction strength of these small molecule ligands with G-quadruplex is thus of particular importance for screening highly effective anticancer drugs. Single molecule force spectroscopy enables direct measurement of the interaction between small molecule ligands and G-quadruplexes. This review highlights the advances of single-molecule force spectroscopy based on atomic force microscopy in the study of the G quadruplex structure and its interaction with small molecule ligands, and summarizes the application and development trend of single molecule force spectrum technology in G quadruplex.

17.
Braz. dent. j ; 28(3): 337-345, May-June 2017. tab, graf
Article in English | LILACS | ID: biblio-888656

ABSTRACT

Abstract Erosion incidence is increasing and its control is still a challenge in clinical practice. This study evaluated 4% TiF4-gel effects on eroded human dentin subjected to in situ erosive/abrasive episodes. Seventy-two previously eroded dentin slabs (0.05 M citric acid, pH 2.3, 20 min) were allocated to 6 groups (n=12) according to the treatment to be performed during the in situ phase and number of erosive/abrasive cycles, as follows: 4% TiF4-gel applied once (TiF41), twice (TiF42) or three times (TiF43) followed by 1, 2 and 3 erosive/abrasive cycles, respectively. Gel was applied before the beginning of the next cycle. Control groups were subjected to 1 (C1), 2 (C2) and 3 (C3) erosive/abrasive cycles only. A seventh group (n=12) comprised in vitro uneroded samples (UN) subjected to 3 erosive/abrasive cycles. Each cycle corresponded to 2 days of erosive (citric acid 0.5%, pH 2.6, 6x/day) and abrasive (electric toothbrush, 10 s/sample, 1 x/day) challenges. Samples were evaluated under profilometry and environmental scanning electron microscopy (ESEM). Atomic force microscopy images (AFM) were also made (n=3). Repeated measures 2-way ANOVA and Tukey test (p<0.001) showed that TiF42, which did not differ from TiF41 and TiF43, revealed a significant reduction in surface loss compared to all control groups. TiF41 and TiF43 showed no significant difference from C1, but both groups demonstrated significantly smaller surface loss than C2 and C3. ESEM and AFM micrographs suggested alterations on treated surfaces compared to samples from control groups, showing reduced diameters of dentinal tubules lumens. Therefore, TiF4 was able to reduce the progression of erosive/abrasive lesions.


Resumo A incidência da erosão tem aumentado e o seu controle ainda é um desafio na prática clínica. Este estudo avaliou os efeitos do gel de TiF4 a 4% sobre a dentina humana erodida submetida a episódios erosivos/abrasivos in situ. Setenta e dois fragmentos de dentina previamente erodida (ácido cítrico 0,05 M, pH 2,3, 20 min) foram distribuídas em 6 grupos (n=12) de acordo com o tratamento a ser realizado durante a fase in situ e o número de ciclos erosivos/abrasivos, como descrito a seguir: gel de TiF4 a 4% aplicado uma (TiF41), duas (TiF42) ou três vezes (TiF43) seguido de 1, 2 e 3 ciclos erosivos/abrasivos, respectivamente. As aplicações dos géis foram realizadas antes do início do ciclo erosivo seguinte. Grupos controle foram submetidos a 1 (C1), 2 (C2) e 3 (C3) ciclos erosivos/abrasivos apenas. Um sétimo grupo (n=12) compreendia amostras sem erosão in vitro (UN) submetidas a 3 ciclos erosivos/abrasivos. Cada ciclo correspondia a 2 dias de desafios erosivos (ácido cítrico a 0,5%, pH 2,6, 6x/dia) e abrasivos (escova de dentes elétrica, 10 s/amostra, 1x/dia). As amostras foram avaliadas em perfilômetro e Microscopia Eletrônica de Varredura Ambiental (MEV). Imagens de microscopia de força atômica (AFM) também foram capturadas (n=3). ANOVA a 2-fatores para medidas repetidas e o teste de Tukey (p<0,001) demonstraram que TiF42, que não diferiu do TiF41 e TiF43, revelou redução significativa na perda de superfície quando comparado a todos os grupos controle. TiF41 e TiF43 não apresentaram diferença estatisticamente significativa em relação ao C1, mas ambos os grupos demonstraram perda de superfície significativamente menor que C2 e C3. Micrografias de MEV e AFM sugeriram alterações nas superfícies tratadas quando comparadas a amostras dos grupos controle, apresentando redução no diâmetro das luzes dos túbulos dentinários. Portanto, o TiF4 foi capaz de reduzir a progressão das lesões erosivas/abrasivas.


Subject(s)
Humans , Female , Adult , Middle Aged , Young Adult , Cariostatic Agents/pharmacology , Dentin/metabolism , Fluorides/pharmacology , Titanium/pharmacology , Tooth Erosion/prevention & control , Toothbrushing , Disease Progression , Gels , Microscopy, Atomic Force , Microscopy, Electron, Scanning
18.
Rio de janeiro; s.n; 2017. 124 p. ilus.
Thesis in Portuguese | BBO, LILACS | ID: biblio-1015198

ABSTRACT

As técnicas clareadoras são consideradas seguras, simples e não invasivas. Assim, ganharam popularidade entre profissionais e pacientes. No entanto, o livre acesso do gel à estrutura dentária e o contato direto com a superfície do esmalte levantam dúvidas sobre seus reais impactos. Novas preocupações surgiram com os chamados produtos de bancada e a possibilidade de auto-aplicação, inclusive com consumo exagerado e/ou sem orientação e acompanhamento. Sendo assim, buscou-se avaliar, os efeitos de produtos clareadores caseiros sobre microestrutura, rugosidade, composição, nanodureza e módulo de elasticidade do esmalte dentário humano, em protocolos de uso normal ou excessivo. Amostras obtidas de 10 terceiros molares foram divididas em 4 grupos: grupo I ­ armazenamento em saliva artificial, grupo II ­ utilização de peróxido de carbamida (PC) 10%, grupo III ­ utilização de peróxido de hidrogênio (H2O2) 10%, grupo IV ­ utilização de tiras clareadoras (H2O2 10%). Cada dente forneceu quatro fragmentos de esmalte para cada um dos grupos. Foram realizadas aplicações diárias de acordo com a recomendação dos fabricantes, e foi adotada simulação de escovação duas vezes ao dia com escova elétrica. Todas as amostras foram armazenadas em saliva artificial e passaram por análises antes do início da terapia, após 4 e 8 semanas de intervenção. A escolha por técnicas não-destrutivas permitiu que cada amostra fosse seu próprio controle. Desse modo, a microscopia confocal por varredura a laser e microscopia de força atômica avaliaram alterações na microestrutura da superfície e foram coletados dados de rugosidade (Sa e Sq) para análise estatística. Os espécimes passaram por testes de nanoindentação para avaliação de nanodureza e módulo de elasticidade. Essas informações foram correlacionadas com as alterações de composição por microespectroscopia Raman. O clareamento com PC não apresentou alterações significativas nas amostras de esmalte, seguindo o padrão de comportamento daquelas escovadas e armazenadas em saliva artificial, tendo se mostrado segura. No entanto, os grupos que passaram por intervenção com H2O2 (III e IV) apresentaram modificações significativas em suas propriedades após 4 e 8 semanas de utilização. A alteração na superfície com aparência mais exposta foi associada a maior detecção de proteínas após as primeiras 4 semanas de utilização, especialmente para o grupo III. Após 8 semanas, a superfície apareceu mais suave, com perda do padrão prismático e queda no conteúdo orgânico, sugerindo uma perda de camadas superficiais desorganizadas. Do mesmo modo, o aumento dos valores de dureza e módulo de elasticidade para essas amostras pareceu derivar do efeito remineralizador da saliva e do papel positivo das proteínas mais expostas nas propriedades mecânicas permitindo maior deslizamento dos cristais e acomodação frente às cargas. Conclui-se que o uso de géis a base de H2O2 deve ser cauteloso, seguindo as recomendações profissionais e que são necessários testes in situ e in vivo para confirmar as tendências observadas.


The bleaching techniques are considered safe, simple and non-invasive and thus have gained popularity among professionals and patients. However, the free access of the gel to dental structures and the direct contact with the surface of the enamel, during the whole treatment raises doubts, about its possible impacts. Concerns were also raised about the emergence of so-called over-the-counter products and the possibility of self-application that could lead to excessive consumption and / or lack of guidance and monitoring. The aim of this study was to evaluate the effects of home bleaching products on the microstructure, roughness, composition, nanohardness and elastic modulus of human dental enamel in protocols of normal or excessive use. Samples were obtained from 10 third molars and divided into 4 groups: group I - storage in artificial saliva, group II - treatment with 10% carbamide peroxide, group III - treatment with 10% hydrogen peroxide, group IV - treatment with whitening strips (10% hydrogen peroxide). Each tooth provided four enamel fragments for treatment in each one of the groups. Daily applications were performed according to the manufacturers' recommendations, and a brushing simulation was used twice a day with an electric brush. All samples were stored in artificial saliva at the treatment intervals and were analyzed before the start of therapy, after 4 and 8 weeks of intervention. The choice by non-destructive techniques allowed each sample to be its own control. Qualitative analyzes of microstructure alteration were carried out using confocal laser scanning microscopy and atomic force microscopy. Roughness data (Sa and Sq) were also obtained for statistical analysis. Nanoindentation tests were used to determine changes in the nanohardness and elastic modulus. All of this information was correlated with composition changes by Raman micro-spectroscopy. Carbamide peroxide bleaching showed no significant changes in enamel samples, following the behavior pattern of those brushed and stored in artificial saliva, and therefore considered safe. However, the groups treated with hydrogen peroxide (III and IV) showed significant modifications in their properties after 4 and 8 weeks of treatment. The change in surface with more exposed appearance was associated with greater protein detection after the first month of treatment, especially for group III. After 8 weeks, the surface appeared smoother, with reduction of prismatic pattern and drop in organic content, suggesting a loss of disorganized mineral surface layers. Likewise, the increase in hardness and elastic modulus values for these samples seems to derive from the remineralizing effect of saliva and the positive role of the most exposed proteins in the mechanical properties, allowing greater slip of the crystals and accommodation with the loads. These changes may not reach clinically perceptible patterns but reinforce the importance of dentists' supervision and monitoring, since in-vivo the patient may be exposed to other challenges that may worsen the impacts. It is concluded that the use of hydrogen peroxide gels in bleaching therapies should be under professional supervision and that in situ and in vivo tests are required to confirm the observed trends.


Subject(s)
Humans , Tooth Bleaching/adverse effects , Dental Enamel/drug effects , Tooth Bleaching Agents/adverse effects , Hydrogen Peroxide/adverse effects , Spectrum Analysis, Raman , Surface Properties , Microscopy, Confocal
19.
An. acad. bras. ciênc ; 89(3,supl): 2411-2422, 2017. graf
Article in English | LILACS | ID: biblio-886815

ABSTRACT

ABSTRACT In this work, the physicochemical and blood compatibility properties of prepared PU/Bio oil nanocomposites were investigated. Scanning electron microscope (SEM) studies revealed the reduction of mean fiber diameter (709 ± 211 nm) compared to the pristine PU (969 nm ± 217 nm). Fourier transform infrared spectroscopy (FTIR) analysis exposed the characteristic peaks of pristine PU. Composite peak intensities were decreased insinuating the interaction of the bio oilTM with the PU. Contact angle analysis portrayed the hydrophobic nature of the fabricated patch compared to pristine PU. Thermal gravimetric analysis (TGA) depicted the better thermal stability of the novel nanocomposite patch and its different thermal behavior in contrast with the pristine PU. Atomic force microscopy (AFM) analysis revealed the increase in the surface roughness of the composite patch. Activated partial thromboplastin time (APTT) and prothrombin time (PT) signified the novel nanocomposite patch ability in reducing the thrombogenicity and promoting the anticoagulant nature. Finally the hemolytic percentage of the fabricated composite was in the acceptable range revealing its safety and compatibility with the red blood cells. To reinstate, the fabricated patch renders promising physicochemical and blood compatible nature making it a new putative candidate for wound healing application.


Subject(s)
Humans , Polyurethanes/chemistry , Materials Testing , Nanocomposites/ultrastructure , Surface Properties , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Membranes, Artificial
20.
Chinese Journal of Analytical Chemistry ; (12): 1813-1823, 2017.
Article in Chinese | WPRIM | ID: wpr-663554

ABSTRACT

Atomic force microscope ( AFM) and fluorescence microscope ( FM) have been emerging as two most commonly used tools for single-molecule study in living cells. Combining the advantages of two microscopes, the development of the integrated AFM-FM technique with high spatiotemporal resolution and multi-function has attracted increasing interest. In this review, the principles of AFM single-molecular force spectroscopy and single-molecule fluorescence imaging were briefly discussed, and the recent advances in the integrated AFM-FM instrumentation were summarized. Subsequently based on our own research in the investigation of ligand-receptors interactions with the integrated AFM-FM technique, its applications in live-cell single-molecule imaging and characterization were introduced.

SELECTION OF CITATIONS
SEARCH DETAIL